Roll No.

337351(14)

B. E. (Third Semester) Examination, April-May 2020/
(New Scheme)

(Mech., Production and Automobile Engg. Branch)

MATHEMATICS-III

Time Allowed: Three hours

Maximum Marks: 80

Minimum Pass Marks: 28

Note: Attempt all questions. Part (a) of each unit is compulsory. Attempt any two parts from (b), (c) and (d) of each unit.

Unit-I

1. (a) If f(x) = x is defined in the interval $[0, 2\pi]$, find

the value of a_0 :

2

- (b) Prove that $x^2 = \frac{\pi^2}{3} + 4 \sum_{n=1}^{\infty} (-1)^n \frac{\cos nx}{n^2}$, in the interval $-\pi < x < \pi$.
- (c) If $f(x) = |\cos x|$, expand f(x) as a Fourier series in the interval $(-\pi, \pi)$.
 - (d) Obtain the 1st three coefficients in the Fourier cosineseries for y, where y is given in the following table.

 $x : 0 \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$

y: 4 8 15 7 6 2

Unit-II

- **2.** (a) Find the Laplace transform of $e^{-3t} \sin 5t \cdot \sin 3t$.
 - (b) Prove that $\int_0^\infty \frac{e^{-t} \sin^2 t}{t} dt = \frac{1}{4} \log 5$ 7
 - (c) Using convolution theorem, evaluate $L^{-1} \left\{ \frac{1}{s^2 \left(s^2 + a^2\right)} \right\}$

(d) Use transform method to solve

 $\frac{d^2y}{dt^2} + 2\frac{dy}{dt} - 3y = \sin t$

 $y = \frac{dy}{dt} = 0$, when t = 0

Unit-III

3. (a) Form the partial differential equation :

 $z = f\left(x^2 - y^2\right)$

(b) Solve the partial differential equation

 $x^{2}(y-z)p+y^{2}(z-x)q=z^{2}(x-y)$

(c) Solve: And Alle IIII a business principles at the 7

 $(D^2 - DD' - 2D'^2)z = (y - 1)e^x$

- (d) Solve the equation by the method of separation of variable:
 - $3\frac{\partial u}{\partial x} + 2\frac{\partial u}{\partial y} = 0, \quad u(x, 0) = 4e^{-x}$

337351(14)

337351(14)

7

7

PTO

- 4. (a) Write the polar form of Cauchy Riemann equation.
 - (b) Determine the analytic function whose real part is

$$\frac{y^n}{x^2 + y^2}$$

(c) Find the residue of $f(z) = \frac{z^3}{(z-1)^4(z-2)(z-3)}$ at

its poles and hence evaluate $\oint_C f(z)dz$, where

$$C: |z| = 2.5$$

(d) By integrating around a unit circle, evaluate 7

$$\int_0^{2\pi} \frac{d\theta}{17 - 8\cos\theta}$$

Unit-V

337351(14)

5. (a) Define Distribution function of the continuous random variable

100]

2

[5]

(b) x is a continuous random variable with probability density function given by:

$$f(x) = Kx (0 \le x < 2)$$

= 2 K (2 \le x < 4)
= -Kx + 6 K (4 \le x < 6)

Find K and mean value of x.

(c) Six dice are thrown 729 times. How many times doyou expect at least three dice to show a five or six? 7

7

(d) Fit Poisson's distribution to the following and calculate theoretical frequencies $\left(e^{-0.5} = 0.61\right)$:

Deaths 0 1 2 3 4

Frequency 1 122 60 15 2 1